伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

商务统计与经济计量系学术报告(07年第3期)4-3,215室

时间:2007-03-30

题 目:An Integrated Maximum Score Estimator for a Generalized Censored Quantile Regression Model

报告人:Songnian Chen (HKUST)

时 间:4月3日周二3:30-5:30pm

地 点:伟易博楼215室

Abstract:

Quantile regression techniques have been widely applied in empirical economics. In this paper we consider the estimation of a generalized quantile regression model when data are subject to fixed or random censoring. Through a discretization technique we transform the censored regression model into a sequence of binary choice models and further propose an integrated smoothed maximum score estimator by combining individual binary choice models corresponding to different cutoff points, following the insight of Horowitz (1992) and Manski (1985) for the estimation of the binary choice model under quantile regression. Unlike the estimators of Horowitz (1992) and Manski (1985), our estimators converge at the usual parametric rate through an integration process. In the case of fixed censoring, our approach overcomes a major drawback of existing approaches. Our approach for the fixed censored case can be extended readily to the case with random censoring for which other existing approaches are no longer applicable. Both of our estimators are consistent and asymptotically normal. A simulation study demonstrates that our estimators perform well in finite samples.

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】