伟易博

  •  伟易博首页
  •  教学项目
    本科 学术硕博 MBA EMBA 高层治理教育 会计硕士 金融硕士 商业剖析硕士 数字教育 课程推荐
  •  北大主页
  •  用户登录
    教职员登录 学生登录 伟易博邮箱
  •  教员招聘  捐赠
English
伟易博(中国区)官方网站

系列讲座

首页 > 系列讲座 > 正文

系列讲座

Robust Deviance Information Criterion for Latent Variable Models

时间:2013-03-14

Statistics Seminar2013-03

Topic:Robust Deviance Information Criterion for Latent Variable Models

Speaker:Yong Li, Renmin University of China

Time:Thursday,14 March, 15:10-16:30

Location:Room 217, Guanghua Building 2

AbstractIt is shown in this paper that the data augmentation technique undermines the theoretical underpinnings of the deviance information criterion (DIC), a widely used information criterion for Bayesian model comparison,although it facilitates parameter estimation for latent variable models via Markov chain Monte Carlo (MCMC) simulation. Data augmentation makes the likelihood function non-regular and hence invalidates the standard asymptotic arguments. A new information criterion, robust DIC (RDIC), is proposed for Bayesian comparison of latent variable models. RDIC is shown to be a good approximation to DIC without data augmentation. While the later quantity is difficult to compute, the expectation - maximization (EM) algorithm facilitates the computation of RDIC when the MCMC output is available. Moreover, RDIC is robust to nonlinear transformations of latent variables and distributional representations of model specification. The proposed approach is illustrated using several popular models in economics and finance.

JEL classification: C11, C12, G12

Keywords: AIC; DIC; EM Algorithm; Latent variable models; Markov Chain Monte Carlo.

分享

010-62747206

伟易博2号楼

?2017 伟易博 版权所有 京ICP备05065075-1
【网站地图】【sitemap】