ÔÚ¸Õ¸Õ¿¢ÊµÄÖйúÊýѧ»á2013ѧÊõÄêÉÏ£¬Ò»ÏÊÜѧ½çÖõÄ¿µÄ½±Ï¡ªµÚʮһ½ìÖÓ¼ÒÇìÊýѧ½±½ÒÏþ»ñ½±Ãûµ¥¡£ÔÚÖî¶à»ñ½±ÕßÖУ¬Ò»ÕÅÄêÇáµÄÃæÅÓÍÑÓ±¶ø³ö£º²»ÒÔ×ÊÀúÂÛ¸ßÏ£¬Î´ÒÔ³¤Ó×ÂÛÓ¢ÐÛ£¬ËûÒÔÖǻۺʹ´Á¢Á¦Ó®µÃÁËÆÀί»áµÄÈϿɡ£Ëû¾ÍÊÇΰÒײ©2013½ì²©Ê¿½áÒµÉú³£½úÔ´¡£
ÉùÓþ£ºÂþ³¤Ñ§Êõ·µÄ¶ÌÔÝ»ð»¨
³£½úÔ´£¬2009Äê±£ËÍÖÁΰÒײ©¹¥¶ÁÉÌÎñͳ¼ÆÓ뾼üÆÁ¿µÄ˶²©Á¬¶Áѧ룬Ö÷Òª´ÓÊÂÀ©É¢Àú³ÌµÄͳ¼ÆÍƶϡ¢¸ßάÊý¾Ýͳ¼ÆÆÊÎö£¬¾¼Ã¼ÆÁ¿·½ÃæµÄÑо¿¡£
³£½úÔ´µÄ¿ÆÑÐЧ¹ûÊ×´ÎÊܵ½ÆÕ±é¹Ø×¢ÊÇÔÚ2011Äê12Ô£¬ËûµÄÂÛÎÄ¡°On the approximate maximum likelihood estimation for diffusion processes¡±ÔÚͳ¼ÆÑ§¶¥¼¶ÆÚ¿¯¡¶Í³¼ÆÄê¼ø¡·£¨The Annals of Statistics£©ÉϽÒÏþ¡£Äܹ»»ñµÃרҵ¶¥¼¶ÆÚ¿¯µÄÈϿɣ¬ÔÚÐÐÒµÖоø·ÇÒ×Ê£¬¸ü¿öÇÒÄÇʱµÄ³£½úÔ´¸Õ¸ÕÑо¿ÉúÒ»Äê¼¶¡£¡°ºÜ·×ÆçÑù¡±Êdz£½úÔ´»ØÒäÆðÔÚ¡¶Í³¼ÆÄê¼ø¡·ÉϽÒÏþµÄÊׯªÎÄÕÂʱ×îÏÈÏëµ½µÄ´Ê¡£
¡°×î³õ³ÂËÉõè½ÌÊÚ£¨³ÂËÉõè½ÌÊÚÊdz£½úÔ´µÄµ¼Ê¦¡ª¡ª±ÊÕß×¢£©ÈÃÎÒ×öµÄ¹¤¾ßºÍÕâ¸öÉÐÓеã·×ÆçÑù£¬ËûÏ£ÍûÎÒ°ÑÀ©É¢Àú³ÌÖÐÒ»Ñùƽ³£J½×½üËÆËÆÈ»Ô¤¼ÆµÄÎó²îºÍ·½²îµÄÖ÷½×µÄ±í´ïÐÎʽ¸ø³öÀ´¡£Í¨³£¶øÑÔ£¬Îó²îºÍ·½²îµÄÖ÷½×±í´ïʽÊôÓÚÒ»¸öÔ¤¼ÆµÄ¸ß½×ÐÔ×Ó£¬ÒªÑо¿ËüÐèÒªÖªµÀÕâ¸öÔ¤¼ÆµÄÒ»½×ÐÔ×Ó¡£×ö×Å×ö×Å£¬ÎÒ·¢Ã÷ÆÕÁÖ˹¶Ù´óѧAit-Sahalia½ÌÊÚ¸ø³öµÄÕâ¸öÒªÁìµÄһЩһ½×µÄͳ¼ÆÐÔ×Ó¶¼»¹²¢²»Ê®·ÖÇåÎú¡£ÓÚÊÇÎÒ¾ÍÔÚÕâÆªÎÄÕÂÖÐϵͳµØ°ÑÕâ¸öÒªÁìµÄͳ¼ÆÐÔ×Ó¸øÑо¿ÇåÎúÁË£¬È»ºó»ùÓÚÕâЩÐÔ×Ó¸ø³öÁËÎó²îºÍ·½²îµÄÖ÷½×¡£¡±
Ñо¿Éú¸ÕÈëѧµÄ³£½úÔ´£¬×ÅʵÂÄÀúÁË¡°ºÜÊÇÍ´¿à¡±µÄ׫дÀú³Ì£¬×îºóÕվɼá³ÖÁËÏÂÀ´¡£¡°¼á³Ö¡±¶þ×Ö˵À´ÈÝÒ×£¬ÂäʵÆðÀ´È´ÒªÔâÊÜ¶à·½ÃæµÄÄÑÌ⣺²»µ«Öî¶à֪ʶµãÒªÏÖѧÏÖÓ㬲¢ÇÒµ¼Ê¦Æäʱ»¹ÔÚÍâÑó£¬Ê¦Í½¶þÈ˽»Á÷ºÜ²»Àû±ã¡£¡°ÎҼǵúÜÊÇÇåÎú£¬ÆäʱÓеĹ«Ê½¾ÍдÁËÎåÁùÒ³£¬Ä£ÄâÒ²ºÜÂý£¬ÓÃ×Ô¼ºµÄµçÄÔÅÌËãÄÜÖ±½Ó°ÑµçÄÔËãµ½¹Ø»ú£¬ÍêÈ«Ïë·ÅÆú¡±¡£
¼á³ÖµÄÀú³ÌÊÇÍ´¿àµÄ£¬È´¸ø³£½úÔ´´øÀ´ÁËеĻúÔµ¡£2003Ä꣬ÔÚÐÂ¼ÓÆÂ»á¼ûµÄ³£½úÔ´ÔÚ×¼±¸ÂÛÎÄ¡°Marginal Empirical Likelihood and Sure Independence Feature of Screening¡±Ê±£¬¼¸¾ÑÐò½¥½øµØÍÆÑÝ£¬»íÈ»·¢Ã÷ÁË·ÇͳһÑùƽ³£µÄ½áÂÛ£¬´ó´óÍØ¿íÁË×î³õµÄ˼Á¿½Ç¶È¡£¡°ÆäʱµÄ˼Á¿ÊÇÔÚÒ»¸öºÜÊÇÒ»Ñùƽ³£µÄ²ÎÊýÄ£×ÓÅä¾°ÏÂÓÃͳһµÄ²½·¥½â¾öÁ˳¬¸ßάÊý¾ÝµÄ±äÁ¿É¸Ñ¡ÎÊÌâ¡£×÷ΪÑÓÉ죬ØÊºóÓÖÔÚÁíһƪÎÄÕÂÖÐ̽ÌÖÕâ¸öÒªÁìÔõô¶ÔÒ»Ñùƽ³£µÄ·Ç²ÎÊýÄ£×ӺͰë²ÎÊýÄ£×Ó¾ÙÐбäÁ¿É¸Ñ¡¡£¡±ÕâÆªÂÛÎÄ×îÖÕÓÚ2013Äê8Ô½ÒÏþÔÚͳ¼ÆÑ§¶¥¼¶¿¯Îͳ¼ÆÄê¼ø¡·ÉÏ¡£ÕâÊdz£½úÔ´µÚ¶þ´ÎÔÚÕâһרҵ¶¥¼¶¿¯ÎïÉϽÒÏþÂÛÎÄ£¬Ò²³ÉΪËû»ñÆÀ¹ú¼ÊÊýÀíͳ¼ÆÑ§»á½ÒÏþµÄ2012ÄêLaha AwardµÄÖ÷ÒªµÓÚ¨¡£
ÔÚ³£½úÔ´¿´À´£¬ÉùÓþÊÇÂþ³¤Ñ§Êõ·;ÖеĶÌÔݻ𻨣¬¹¥¿ËÄѹصijɼ¨¸Ð²ÅÊÇ×îÖÕµÄÖ§³Ö¡£Ëû´Ó²»·ñ¶¨¿ÆÑзÉϵÄÂþ³¤ºÍ¼èÄÑ£¬¡°¾ÍÏñСʱ¼ä×ö¾ºÈüÌ⣬²»»á×öÊÇÕý³£µÄ£¬³£³£»áÏëÒ»µÀÌâÒ»Õû¸öÍíÉÏ£¬¿ÉÊǵ±ÄãÏë³öÀ´ÃÕµ×ÒÔºó£¬ÄÇÖÖ¸ÐÊÜÕæµÄºÜˬ¡£¡±
¶÷ʦ£º²»¸ºÖöÍÐ íÆíÂǰÐÐ
¡°ËûÓÀÔ¶ÔÚ¸øÎÒÐÅÐÄ£¬ÃãÀøÎÒ»¹¿ÉÒÔ×öµÃ¸üºÃ¡£¡±Õâ¾äÃãÀøÔ´×Ô³£½úÔ´µÄµ¼Ê¦£¬Î°Òײ©ÖÎÀíѧԺ³ÂËÉõè½ÌÊÚ¡£
ÔÚ³£½úÔ´µÄÐÎòÖУ¬³ÂËÉõè½ÌÊÚÓÌÈç×Ô¼ºµÄÇ×ÈË¡£¡°¿ÉÊÇËû×ÜÊǺÜÊÇÈÝÄÉÎÒ£¬ÕâÊÇÎÒºÜÊǸж¯ºÍÄÑÍüµÄµØ·½¡£¡±³£½úÔ´ÔÚ¶Áʱ´ú£¬³ÂËÉõè½ÌÊÚÃãÀøËû¶à¡°×ß³öÈ¥¡±£¬Í¨¹ýѧÊõ½»Á÷Ã÷Îú×Ô¼ºµÄÑо¿Ë¼Ð÷¡£ÔÚµ¼Ê¦µÄÃãÀøºÍ×ÊÖúÏ£¬³£½úÔ´ÏȺóÔÚÃÀ¹ú¡¢ÐÂ¼ÓÆÂºÍ°ÄÖÞ¾ÙÐÐѧÊõ»á¼û£¬ËûÏÖÔÚÖ÷ÒªµÄѧÊõÂÛÎÄ¡°Marginal Empirical Likelihood and Sure Independence Feature of Screening¡±¼´ÊÇÔÚÐÂ¼ÓÆÂ½»Á÷ʱÍê³É¡£¶øÕâЩѧÊõ»á¼ûµÄ×ÊÖú£¬³ýÁËѧУ¡¢Ñ§ÔººÍϵÀïÌî²¹µÄÒ»²¿·ÖÍ⣬ÆäÓà¶¼ÓɳÂËÉõè½ÌÊÚ´ÓËûµÄ¿ÆÑо·ÑÖв¦³ö¡£¡°Õâ±ÊÇ®²¢²»ÊÇÒ»±ÊСÊý×Ö£¬ÎÒÏëºÜÉÙÓÐÏÈÉú»á¶ÔѧÉúÕâô¿¶¿®¡±£¬³ÂËÉõè½ÌÊÚ´ø¸ø³£½úÔ´µÄÊÇʵ×ÅʵÔÚµÄ×ÊÖú¡£
ÖúÁ¦³£½úÔ´×ßÉÏѧÊõ֮·µÄ£¬³ýÁ˵¼Ê¦µÄ¾´ÖØ£¬ÉÐÓÐĸУµÄÖ§³Ö¡£ÔÚ±±¾©´óѧ£¬ÎªÇàÄêѧ×Ó³ö¹ú½»Á÷Óë»á¼ûÁ¿Éí¶¨×öµÄÏîÄ¿ÓëÕþ²ß¸»ºñ¶àÑù£¬ÊÇÐí¶àÄêÇáѧ×Ó×ß³ö¹úÃŵĴ°¿Ú¡£³£½úÔ´ÔÚ¶Áʱ´ú£¬ÏȺó¸°ÃÀ¹ú¡¢°Ä´óÀûÑǵȵؼÓÈëѧÊõ¾Û»áºÍ¶ÌÆÚ»á¼û£¬¶¼ÊÇͨ¹ýѧУµÄÏîÄ¿µÃÒÔ³ÉÐС£³£½úÔ´±¾¿Æ¾Í¶ÁµÄ±±¾©Ê¦·¶´óѧÊýѧѧԺҲΪËûÈÕºóµÄÉú³¤×öºÃÆÌµæ£¬¡°±±Ê¦´óÊýѧѧԺ¸øÁËÎÒÐí¶àÐí¶à£¬ÎÒҲѧµ½ÁËÐí¶à£¬ÎÒºÜÊÇ×ÔºÀÎÒÊÇÒ»Ãû±±Ê¦´óÈË¡±¡£
ÈÙ»ñµÚʮһ½ìÖÓ¼ÒÇìÊýѧ½±£¬³£½úԴ̹ÑÔÔÚËûÒâÁÏÖ®Íâ¡£ÖÓ¼ÒÇìÊýѧ½±ÊÇÖйúÊýѧ»áÈý´ó½±ÏîÖ®Ò»£¬Ã¿Á½Äê²Å½ÒÏþÒ»´Î£¬Ö¼ÔÚ½±ÀøÊýѧÏà¹Ø×¨ÒµµÄÑо¿ÉúÒÔ¼°½áÒµÈýÄêÒÔÄÚµÄÇàÄêѧÕߣ¬Ã¿½ìÔ¼ËÄÈË×óÓÒ¡£½ñÊÀÊýѧÓÐÐí¶à·ÖÖ§ºÍÆ«Ïò£¬Ê¹µÃ¾ºÕùºÜÊÇÇ¿ÁÒ¡£¡°²¢ÇÒÔÚÐí¶àÈË¿´À´£¬Í³¼ÆÑ§²¢²»¿ÉËãÊÇÕæÕýµÄÊýѧ£¬²¢ÇÒÎÒ»¹²¢²»ÊÇÊýѧѧԺµÄѧÉú£¬Õâ¾ÍÈÃÏ£ÍûÔ½·¢Ãìã¡£ÒÔÊÇÕâ´ÎÄÜ»ñµÃÕâ¸ö½±ÏÎÒºÜÊÇллÆÀίÃǶÔÎÒËù×öÊÂÇéµÄÈϿɣ¬Ð»Ð»µ¼Ê¦¶ÔÎÒµÄ×ÊÖú¡£×ܵÄÀ´Ëµ£¬ÎÒÒÔΪÕÕ¾ÉûÓÐÈÃËûʧÍû¡£¡±
δÀ´£ºÐÄϵѧÊõ ²»Íü³õÐÄ
ѧÊõ¿ÆÑÐÕ¼ÓÐÁ˳£½úÔ´¾Å³ÉµÄÉúÑÄ¡£ÔÚÎå¹âʮɫµÄУ԰ÖУ¬ÌìÌì¶¼ÒªÓëËÀ°åÊý¾Ý´ò½»µÀµÄËû£¬È´È϶¨ÕâÊÇ×Ô¼ºµÄ¡°×îÓÅÑ¡Ôñ¡±¡£
ºÍ´ó´ó¶¼Í¬ÁäÈËÒ»Ñù£¬³£½úÔ´¶ÔÊýѧµÄÐËȤʼÓÚͯÄê¡£ÉÔÏÔ²î±ðµÄÊÇ£¬ÔÚ¼Ò¼Ò»§»§¶¼±¨Ãû¿ÎÍâ°àµÄͯÄêʱ¹âÀ³£½úÔ´µÄâïÊѲ¢Ã»ÓÐÇ¿ÆÈËû¼ÓÈëÈκÎÐËȤ°à£¬Î¨Ò»µÄ°ÂÊý°àÊdz£½úÔ´×Ô¼ºÒªÇó±¨ÃûµÄ¡£¡°ÎÒÒÔΪСʱ¼äÏÈÉú¶ÔһСÎÒ˽¼ÒµÄÓ°Ïìͦ´óµÄ£¬ÎÒµÄÖÐѧÊýѧÏÈÉúÂÞ¼ÒÄþÏÈÉúÒ»Ö±¶¼¸øÎÒÐÅÐÄ£¬¶ÔСº¢×Ӷ༸¾äÒ»¶¨ÍùÍù»áÈÃËû¸üÓж¯Á¦¡£¡±âïÊÑÓªÔìµÄ×ÔÓÉ¿íËɵÄÑ¡ÔñÇéÐΣ¬ÏÈÉúÔ´Ô´Ò»Ö±µÄÃãÀøºÍ×ÊÖú£¬¼Ó֮ͯÄê¼´±¬·¢µÄÐËȤ£¬2005Ä꣬³£½úÔ´ÒÔͳ¼Æ×÷Ϊ×Ô¼ºµÄ´óѧרҵºÍδÀ´Ñо¿Æ«Ïò£¬ÏÕЩÊǺÁÎÞÐüÄîµÄ¡£
ϲ»¶£¬ÓëÒÔϲ»¶Îª×¨Òµ£¬¶þÕßÏÖʵÉϱ£´æ×ÅÖØ´óµÄ²î±ð£¬ËüÒâζ×ÅҪΪСÎÒ˽¼ÒÖÓ°®µÄÊÂÒµÖ§¸¶¼Ó±¶µÄ×êÑкÍά»¤£¬¶øÎȹ̳õÐÄ¡£×Ô´Óͳ¼ÆÑ§ÓÉÐËȤתÄð³ÉÑо¿¹¤¾ß£¬ÓÌÈç°×Ö½ºÚ×ÖÉÏÑÏËàµÄÊý¾ÝÒ»Ñù£¬³£½úÔ´µÄÉúÑÄÖð½¥×ßÏòÁË¡°¼òµ¥¡±µÄÆ«Ïò£ºÈýµãÒ»ÏߵIJþâ±Ñ§Ï°£¬±ÕÃÅ×êÑеÄóÆÖ¾¿à¸É¡¡Ëûʱ³£½«×Ô¼º¹ØÔÚ·¿¼äÀïÑо¿Êý¾Ý£¬²»ÐíËûÈË´ò½Á¡£ÐÒÔ˵ÄÊÇ£¬Õâ¶ÎÁȼŶø·á¸»µÄ×êÑÐÀú³ÌÎ´Ôø¸Ä±ä³£½úÔ´µÄ³õÐÄ£¬ËûÈÔ´ÓѧϰºÍÉúÑĸÐÓ¦Öª×㣬¡°ÑÏËàÄÚÁ²¡¢ÐÄϵ¿ÆÑÐѧÊõ£»Ò²ÄÜäìÈ÷ÈÈÇé¡¢ÈȰ®ÉúÑÄ¡±¡£
ÊÂÇéÖ®Ó࣬³£½úԴϲ»¶ºÍÅóÙÒ»ÆðK¸è£¬¡°ÍæµÃÌØÊâhigh¡±£»Ï²»¶È¥¸÷µØ×ß×ßתת£¬ÂÃÓÎÉ¢ÐÄ¡£ºÍÎÞÊýÄêÇáÈËÒ»Ñù£¬µ±³£½úÔ´·ºÆðÔÚҹɫÖеij©´ºÔ°Ê³½Ö£¬»òÊDZ³×ÅË«¼ç°üÔÚ»ð³µÕ¾áÝá壬ºÜÄÑÓÐÈË»áÏëÏóµ½£¬Éí±ßÕâ¸öµÍµ÷µÄÄêÇáÈËÒ»¾µÇÉÏÖÓ¼ÒÇìÊýѧ½±µÄÁ콱̨¡£
²©Ê¿½áÒµºóµÄ³£½úÔ´£¬ÏÖÔÚÔÚÄ«¶û±¾´óѧÊýѧÓëͳ¼ÆÏµµ£µ±research fellow¡£»Ã»¯¶à¶ËÓÖÆäÀÖÎÞÏ޵ļÆÁ¿Ñ§¿ÆÒѾΪËû¶´¿ª´óÃÅ£¬ÔÚѧÊõµÄõè¾¶ÉÏÎÞηÎÞ¾åµØÇ°ÐÐÊdz£½úÔ´×î¼á¶¨µÄÑ¡Ôñ¡£¡°ÈôÊÇÑàÔ°Ô¸Òâ½ÓÄÉÎÒ£¬ÎÒÔ¸Òâ»Øµ½ËýµÄ»³±§¡±¡£
ÐÂÎÅȪԴ£º±±¾©´óѧÐÂÎÅÍø